Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Cell Rep ; 43(4): 113988, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38517886

RESUMO

The basal breast cancer subtype is enriched for triple-negative breast cancer (TNBC) and displays consistent large chromosomal deletions. Here, we characterize evolution and maintenance of chromosome 4p (chr4p) loss in basal breast cancer. Analysis of The Cancer Genome Atlas data shows recurrent deletion of chr4p in basal breast cancer. Phylogenetic analysis of a panel of 23 primary tumor/patient-derived xenograft basal breast cancers reveals early evolution of chr4p deletion. Mechanistically we show that chr4p loss is associated with enhanced proliferation. Gene function studies identify an unknown gene, C4orf19, within chr4p, which suppresses proliferation when overexpressed-a member of the PDCD10-GCKIII kinase module we name PGCKA1. Genome-wide pooled overexpression screens using a barcoded library of human open reading frames identify chromosomal regions, including chr4p, that suppress proliferation when overexpressed in a context-dependent manner, implicating network interactions. Together, these results shed light on the early emergence of complex aneuploid karyotypes involving chr4p and adaptive landscapes shaping breast cancer genomes.


Assuntos
Neoplasias da Mama , Redes Reguladoras de Genes , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Animais , Camundongos , Cromossomos Humanos Par 4/genética , Proliferação de Células/genética , Aberrações Cromossômicas , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
2.
Immunity ; 56(12): 2755-2772.e8, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38039967

RESUMO

In triple-negative breast cancer (TNBC), stromal restriction of CD8+ T cells associates with poor clinical outcomes and lack of responsiveness to immune-checkpoint blockade (ICB). To identify mediators of T cell stromal restriction, we profiled murine breast tumors lacking the transcription factor Stat3, which is commonly hyperactive in breast cancers and promotes an immunosuppressive tumor microenvironment. Expression of the cytokine Chi3l1 was decreased in Stat3-/- tumors. CHI3L1 expression was elevated in human TNBCs and other solid tumors exhibiting T cell stromal restriction. Chi3l1 ablation in the polyoma virus middle T (PyMT) breast cancer model generated an anti-tumor immune response and delayed mammary tumor onset. These effects were associated with increased T cell tumor infiltration and improved response to ICB. Mechanistically, Chi3l1 promoted neutrophil recruitment and neutrophil extracellular trap formation, which blocked T cell infiltration. Our findings provide insight into the mechanism underlying stromal restriction of CD8+ T cells and suggest that targeting Chi3l1 may promote anti-tumor immunity in various tumor types.


Assuntos
Armadilhas Extracelulares , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Citocinas , Armadilhas Extracelulares/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral
3.
Biomed Pharmacother ; 167: 115559, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37742611

RESUMO

Oral cavity squamous cell carcinoma (OSCC) is a complex and dynamic disease characterized by clinicopathological and molecular heterogeneity. Spatial and temporal heterogeneity of cell subpopulations has been associated with cancer progression and implicated in the prognosis and therapy response. Emerging evidence indicates that aberrant epigenetic profiles in OSCC may foster an immunosuppressive tumor microenvironment by modulating the expression of immune-related long non-coding RNAs (lncRNAs). DNA methylation analysis was performed in 46 matched OSCC and normal adjacent tissue samples using a genome-wide platform (Infinium HumanMethylation450 BeadChip). Reference-based computational deconvolution (MethylCIBERSORT) was applied to infer the immune cell composition of the bulk samples. The expression levels of genes encoding immune markers and differentially methylated lncRNAs were investigated using The Cancer Genome Atlas dataset. OSCC specimens presented distinct immune cell composition, including the enrichment of monocyte lineage cells, natural killer cells, cytotoxic T-lymphocytes, regulatory T-lymphocytes, and neutrophils. In contrast, B-lymphocytes, effector T-lymphocytes, and fibroblasts were diminished in tumor samples. The hypomethylation of three immune-associated lncRNAs (MEG3, MIR155HG, and WFDC21P) at individual CpG sites was confirmed by bisulfite-pyrosequencing. Also, the upregulation of a set of immune markers (FOXP3, GZMB, IL10, IL2RA, TGFB, IFNG, TDO2, IDO1, and HIF1A) was detected. The immune cell composition, immune markers alteration, and dysregulation of immune-associated lncRNAs reinforce the impact of the immune microenvironment in OSCC. These concurrent factors contribute to tumor heterogeneity, suggesting that epi-immunotherapy could be an efficient alternative to treat OSCC.

4.
ACS Appl Mater Interfaces ; 15(28): 33250-33262, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37404007

RESUMO

The immune response against a tumor is characterized by the interplay among components of the immune system and neoplastic cells. Here, we bioprinted a model with two distinct regions containing gastric cancer patient-derived organoids (PDOs) and tumor-infiltrated lymphocytes (TILs). The initial cellular distribution allows for the longitudinal study of TIL migratory patterns concurrently with multiplexed cytokine analysis. The chemical properties of the bioink were designed to present physical barriers that immune T-cells must breech during infiltration and migration toward a tumor with the use of an alginate, gelatin, and basal membrane mix. TIL activity, degranulation, and regulation of proteolytic activity reveal insights into the time-dependent biochemical dynamics. Regulation of the sFas and sFas-ligand present on PDOs and TILs, respectively, and the perforin and granzyme longitudinal secretion confirms TIL activation when encountering PDO formations. TIL migratory profiles were used to create a deterministic reaction-advection diffusion model. The simulation provides insights that decouple passive from active cell migration mechanisms. The mechanisms used by TILs and other adoptive cell therapeutics as they infiltrate the tumor barrier are poorly understood. This study presents a pre-screening strategy for immune cells where motility and activation across ECM environments are crucial indicators of cellular fitness.


Assuntos
Linfócitos do Interstício Tumoral , Neoplasias , Humanos , Técnicas de Cocultura , Linfócitos do Interstício Tumoral/patologia , Estudos Longitudinais , Hidrogéis , Neoplasias/patologia , Movimento Celular
5.
Cancer Immunol Res ; 11(9): 1184-1202, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37311021

RESUMO

The tumor-immune microenvironment (TIME) is a critical determinant of therapeutic response. However, the mechanisms regulating its modulation are not fully understood. HER2Δ16, an oncogenic splice variant of the HER2, has been implicated in breast cancer and other tumor types as a driver of tumorigenesis and metastasis. Nevertheless, the underlying mechanisms of HER2Δ16-mediated oncogenicity remain poorly understood. Here, we show that HER2∆16 expression is not exclusive to the clinically HER2+ subtype and associates with a poor clinical outcome in breast cancer. To understand how HER2 variants modulated the tumor microenvironment, we generated transgenic mouse models expressing either proto-oncogenic HER2 or HER2Δ16 in the mammary epithelium. We found that HER2∆16 tumors were immune cold, characterized by low immune infiltrate and an altered cytokine profile. Using an epithelial cell surface proteomic approach, we identified ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) as a functional regulator of the immune cold microenvironment. We generated a knock-in model of HER2Δ16 under the endogenous promoter to understand the role of Enpp1 in aggressive HER2+ breast cancer. Knockdown of Enpp1 in HER2Δ16-derived tumor cells resulted in decreased tumor growth, which correlated with increased T-cell infiltration. These findings suggest that HER2Δ16-dependent Enpp1 activation associates with aggressive HER2+ breast cancer through its immune modulatory function. Our study provides a better understanding of the mechanisms underlying HER2Δ16-mediated oncogenicity and highlights ENPP1 as a potential therapeutic target in aggressive HER2+ breast cancer.


Assuntos
Neoplasias , Receptor ErbB-2 , Animais , Camundongos , Linhagem Celular Tumoral , Camundongos Transgênicos , Diester Fosfórico Hidrolases/genética , Proteômica , Pirofosfatases/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
6.
J Clin Invest ; 133(7)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36795481

RESUMO

Activation of the tyrosine kinase c-Src promotes breast cancer progression and poor outcomes, yet the underlying mechanisms are incompletely understood. Here, we have shown that deletion of c-Src in a genetically engineered model mimicking the luminal B molecular subtype of breast cancer abrogated the activity of forkhead box M1 (FOXM1), a master transcriptional regulator of the cell cycle. We determined that c-Src phosphorylated FOXM1 on 2 tyrosine residues to stimulate its nuclear localization and target gene expression. These included key regulators of G2/M cell-cycle progression as well as c-Src itself, forming a positive feedback loop that drove proliferation in genetically engineered and patient-derived models of luminal B-like breast cancer. Using genetic approaches and small molecules that destabilize the FOXM1 protein, we found that targeting this mechanism induced G2/M cell-cycle arrest and apoptosis, blocked tumor progression, and impaired metastasis. We identified a positive correlation between FOXM1 and c-Src expression in human breast cancer and show that the expression of FOXM1 target genes predicts poor outcomes and associates with the luminal B subtype, which responds poorly to currently approved therapies. These findings revealed a regulatory network centered on c-Src and FOXM1 that is a targetable vulnerability in aggressive luminal breast cancers.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Linhagem Celular Tumoral , Fatores de Transcrição Forkhead/metabolismo , Proliferação de Células , Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica
7.
Front Oncol ; 12: 935093, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928876

RESUMO

Extracellular matrix (ECM) remodeling and inflammation have been reported in penile carcinomas (PeCa). However, the cell types and cellular crosstalk involved in PeCa are unexplored. We aimed to characterize the complexity of cells and pathways involved in the tumor microenvironment (TME) in PeCa and propose target molecules associated with the TME. We first investigated the prognostic impact of cell types with a secretory profile to identify drug targets that modulate TME-enriched cells. The secretome analysis using the PeCa transcriptome revealed the enrichment of inflammation and extracellular matrix pathways. Twenty-three secreted factors were upregulated, mainly collagens and matrix metalloproteinases (MMPs). The deregulation of collagens and MMPs was confirmed by Quantitative reverse transcription - polymerase chain reaction (RT-qPCR). Further, the deconvolution method (digital cytometry) of the bulk samples revealed a high proportion of macrophages and dendritic cells (DCs) and B cells. Increased DCs and B cells were associated with better survival. A high proportion of cancer-associated fibroblasts (CAFs) was observed in low-survival patients. Patients with increased CAFs had decreased immune cell proportions. The treatment with the MMP inhibitor GM6001 in CAF cells derived from PeCa resulted in altered cell viability. We reported a crosstalk between immune cells and CAFs, and the proportion of these cell populations was associated with prognosis. We demonstrate that a drug targeting MMPs modulates CAFs, expanding the therapeutic options of PeCa.

8.
NAR Cancer ; 4(2): zcac013, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35399185

RESUMO

DNA repair by homologous recombination (HR) is critical for the maintenance of genome stability. Germline and somatic mutations in HR genes have been associated with an increased risk of developing breast (BC) and ovarian cancers (OvC). However, the extent of factors and pathways that are functionally linked to HR with clinical relevance for BC and OvC remains unclear. To gain a broader understanding of this pathway, we used multi-omics datasets coupled with machine learning to identify genes that are associated with HR and to predict their sub-function. Specifically, we integrated our phylogenetic-based co-evolution approach (CladePP) with 23 distinct genetic and proteomic screens that monitored, directly or indirectly, DNA repair by HR. This omics data integration analysis yielded a new database (HRbase) that contains a list of 464 predictions, including 76 gold standard HR genes. Interestingly, the spliceosome machinery emerged as one major pathway with significant cross-platform interactions with the HR pathway. We functionally validated 6 spliceosome factors, including the RNA helicase SNRNP200 and its co-factor SNW1. Importantly, their RNA expression correlated with BC/OvC patient outcome. Altogether, we identified novel clinically relevant DNA repair factors and delineated their specific sub-function by machine learning. Our results, supported by evolutionary and multi-omics analyses, suggest that the spliceosome machinery plays an important role during the repair of DNA double-strand breaks (DSBs).

9.
Methods Mol Biol ; 2381: 285-303, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34590283

RESUMO

Cancer can develop from an accumulation of alterations, some of which cause a nonmalignant cell to transform to a malignant state exhibiting increased rate of cell growth and evasion of growth suppressive mechanisms, eventually leading to tissue invasion and metastatic disease. Triple-negative breast cancers (TNBC) are heterogeneous and are clinically characterized by the lack of expression of hormone receptors and human epidermal growth factor receptor 2 (HER2), which limits its treatment options. Since tumor evolution is driven by diverse cancer cell populations and their microenvironment, it is imperative to map TNBC at single-cell resolution. Here, we describe an experimental procedure for isolating a single-cell suspension from a TNBC patient-derived xenograft, subjecting it to single-cell RNA sequencing using droplet-based technology from 10× Genomics and analyzing the transcriptomic data at single-cell resolution to obtain inferred copy number aberration profiles, using scCNA. Data obtained using this single-cell RNA sequencing experimental and analytical methodology should enhance our understanding of intratumor heterogeneity which is key for identifying genetic vulnerabilities and developing effective therapies.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Genômica , Xenoenxertos , Humanos , Neoplasias de Mama Triplo Negativas/genética , Microambiente Tumoral
10.
Cancers (Basel) ; 13(17)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34503266

RESUMO

Breast cancer is a heterogenous disease with variability in tumor cells and in the surrounding tumor microenvironment (TME). Understanding the molecular diversity in breast cancer is critical for improving prediction of therapeutic response and prognostication. High-plex spatial profiling of tumors enables characterization of heterogeneity in the breast TME, which can holistically illuminate the biology of tumor growth, dissemination and, ultimately, response to therapy. The GeoMx Digital Spatial Profiler (DSP) enables researchers to spatially resolve and quantify proteins and RNA transcripts from tissue sections. The platform is compatible with both formalin-fixed paraffin-embedded and frozen tissues. RNA profiling was developed at the whole transcriptome level for human and mouse samples and protein profiling of 100-plex for human samples. Tissue can be optically segmented for analysis of regions of interest or cell populations to study biology-directed tissue characterization. The GeoMx Breast Cancer Consortium (GBCC) is composed of breast cancer researchers who are developing innovative approaches for spatial profiling to accelerate biomarker discovery. Here, the GBCC presents best practices for GeoMx profiling to promote the collection of high-quality data, optimization of data analysis and integration of datasets to advance collaboration and meta-analyses. Although the capabilities of the platform are presented in the context of breast cancer research, they can be generalized to a variety of other tumor types that are characterized by high heterogeneity.

11.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34266948

RESUMO

Hypoxia is an important phenomenon in solid tumors that contributes to metastasis, tumor microenvironment (TME) deregulation, and resistance to therapies. The receptor tyrosine kinase AXL is an HIF target, but its roles during hypoxic stress leading to the TME deregulation are not well defined. We report here that the mammary gland-specific deletion of Axl in a HER2+ mouse model of breast cancer leads to a normalization of the blood vessels, a proinflammatory TME, and a reduction of lung metastases by dampening the hypoxic response in tumor cells. During hypoxia, interfering with AXL reduces HIF-1α levels altering the hypoxic response leading to a reduction of hypoxia-induced epithelial-to-mesenchymal transition (EMT), invasion, and production of key cytokines for macrophages behaviors. These observations suggest that inhibition of Axl generates a suitable setting to increase immunotherapy. Accordingly, combining pharmacological inhibition of Axl with anti-PD-1 in a preclinical model of HER2+ breast cancer reduces the primary tumor and metastatic burdens, suggesting a potential therapeutic approach to manage HER2+ patients whose tumors present high hypoxic features.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Imunoterapia , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Deleção de Genes , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Marcação de Genes , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Inibidores de Checkpoint Imunológico/administração & dosagem , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/genética , Metástase Neoplásica/imunologia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Proteínas Proto-Oncogênicas/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Microambiente Tumoral/efeitos dos fármacos , Receptor Tirosina Quinase Axl
12.
Nat Commun ; 12(1): 3299, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083537

RESUMO

Bioenergetic perturbations driving neoplastic growth increase the production of reactive oxygen species (ROS), requiring a compensatory increase in ROS scavengers to limit oxidative stress. Intervention strategies that simultaneously induce energetic and oxidative stress therefore have therapeutic potential. Phenformin is a mitochondrial complex I inhibitor that induces bioenergetic stress. We now demonstrate that inflammatory mediators, including IFNγ and polyIC, potentiate the cytotoxicity of phenformin by inducing a parallel increase in oxidative stress through STAT1-dependent mechanisms. Indeed, STAT1 signaling downregulates NQO1, a key ROS scavenger, in many breast cancer models. Moreover, genetic ablation or pharmacological inhibition of NQO1 using ß-lapachone (an NQO1 bioactivatable drug) increases oxidative stress to selectively sensitize breast cancer models, including patient derived xenografts of HER2+ and triple negative disease, to the tumoricidal effects of phenformin. We provide evidence that therapies targeting ROS scavengers increase the anti-neoplastic efficacy of mitochondrial complex I inhibitors in breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Fenformin/farmacologia , Fator de Transcrição STAT1/metabolismo , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Sinergismo Farmacológico , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Metabolismo Energético/efeitos dos fármacos , Feminino , Glutationa/antagonistas & inibidores , Glutationa/biossíntese , Humanos , Interferon gama/administração & dosagem , Interferon gama/deficiência , Interferon gama/metabolismo , Células MCF-7 , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos SCID , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , NAD(P)H Desidrogenase (Quinona)/metabolismo , Naftoquinonas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Fenformin/administração & dosagem , Poli I-C/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT1/agonistas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cancers (Basel) ; 13(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804927

RESUMO

Colorectal cancer (CRC) is a disease with high incidence and mortality. Colonoscopy is a gold standard among tests used for CRC traceability. However, serious complications, such as colon perforation, may occur. Non-invasive diagnostic procedures are an unmet need. We aimed to identify a plasma microRNA (miRNA) signature for CRC detection. Plasma samples were obtained from subjects (n = 109) at different stages of colorectal carcinogenesis. The patients were stratified into a non-cancer (27 healthy volunteers, 17 patients with hyperplastic polyps, 24 with adenomas), and a cancer group (20 CRC and 21 metastatic CRC). miRNAs (381) were screened by TaqMan Low-Density Array. A classifier based on four differentially expressed miRNAs (miR-28-3p, let-7e-5p, miR-106a-5p, and miR-542-5p) was able to discriminate cancer versus non-cancer cases. The overexpression of these miRNAs was confirmed by RT-qPCR, and a cross-study validation step was implemented using eight data series retrieved from Gene Expression Omnibus (GEO). In addition, another external data validation using CRC surgical specimens from The Cancer Genome Atlas (TCGA) was carried out. The predictive model's performance in the validation set was 76.5% accuracy, 59.4% sensitivity, and 86.8% specificity (area under the curve, AUC = 0.716). The employment of our model in the independent publicly available datasets confirmed a good discrimination performance in five of eight datasets (median AUC = 0.823). Applying this algorithm to the TCGA cohort, we found 99.5% accuracy, 99.7% sensitivity, and 90.9% specificity (AUC = 0.998) when the model was applied to solid colorectal tissues. Overall, we suggest a novel signature of four circulating miRNAs, i.e., miR-28-3p, let-7e-5p, miR-106a-5p, and miR-542-5p, as a predictive tool for the detection of CRC.

14.
Cells ; 10(4)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917394

RESUMO

Penile cancer (PeCa) is a common disease in poor and developing countries, showing high morbidity rates. Despite the recent progress in understanding the molecular events involved in PeCa, the lack of well-characterized in vitro models precludes new advances in anticancer drug development. Here we describe the establishment of five human primary penile cancer-derived cell cultures, including two epithelial and three cancer-associated fibroblast (CAF) cells. Using high-throughput genomic approaches, we found that the epithelial PeCa derived- cells recapitulate the molecular alterations of their primary tumors and present the same deregulated signaling pathways. The differentially expressed genes and proteins identified are components of key oncogenic pathways, including EGFR and PI3K/AKT/mTOR. We showed that epithelial PeCa derived cells presented a good response to cisplatin, a common therapeutic approach used in PeCa patients. The growth of a PeCa-derived cell overexpressing EGFR was inhibited by EGFR inhibitors (cetuximab, gefitinib, and erlotinib). We also identified CAF signature markers in three PeCa-derived cells with fibroblast-like morphology, indicating that those cells are suitable models for PeCa microenvironment studies. We thus demonstrate the utility of PeCa cell models to dissect mechanisms that promote penile carcinogenesis, which are useful models to evaluate therapeutic approaches for the disease.


Assuntos
Modelos Biológicos , Terapia de Alvo Molecular , Neoplasias Penianas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Forma Celular , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Penianas/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética
15.
Biofabrication ; 13(2)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33440351

RESUMO

Hydrogels consisting of controlled fractions of alginate, gelatin, and Matrigel enable the development of patient-derived bioprinted tissue models that support cancer spheroid growth and expansion. These engineered models can be dissociated to be then reintroduced to new hydrogel solutions and subsequently reprinted to generate multigenerational models. The process of harvesting cells from 3D bioprinted models is possible by chelating the ions that crosslink alginate, causing the gel to weaken. Inclusion of the gelatin and Matrigel fractions to the hydrogel increases the bioactivity by providing cell-matrix binding sites and promoting cross-talk between cancer cells and their microenvironment. Here we show that immortalized triple-negative breast cancer cells (MDA-MB-231) and patient-derived gastric adenocarcinoma cells can be reprinted for at least three 21 d culture cycles following bioprinting in the alginate/gelatin/Matrigel hydrogels. Our drug testing results suggest that our 3D bioprinted model can also be used to recapitulatein vivopatient drug response. Furthermore, our results show that iterative bioprinting techniques coupled with alginate biomaterials can be used to maintain and expand patient-derived cancer spheroid cultures for extended periods without compromising cell viability, altering division rates, or disrupting cancer spheroid formation.


Assuntos
Bioimpressão , Neoplasias , Impressão Tridimensional , Alginatos , Colágeno , Combinação de Medicamentos , Gelatina , Humanos , Hidrogéis , Laminina , Proteoglicanas
16.
Front Oncol ; 11: 786150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35223452

RESUMO

OBJECTIVES: To integrate mRNA and miRNA expression profiles of mucoepidermoid carcinomas (MECs) and normal salivary gland (NSGs) tissue samples and identify potential drivers. MATERIAL AND METHODS: Gene and miRNA expression arrays were performed in 35 MECs and six NSGs. RESULTS: We found 46 differentially expressed (DE) miRNAs and 3,162 DE mRNAs. Supervised hierarchical clustering analysis of the DE transcripts revealed two clusters in both miRNA and mRNA profiles, which distinguished MEC from NSG samples. The integrative miRNA-mRNA analysis revealed a network comprising 696 negatively correlated interactions (44 miRNAs and 444 mRNAs) involving cell signaling, cell cycle, and cancer-related pathways. Increased expression levels of miR-205-5p and miR-224-5p and decreased expression levels of miR-139-3p, miR-145-3p, miR-148a-3p, miR-186-5p, miR-338-3p, miR-363-3p, and miR-4324 were significantly related to worse overall survival in MEC patients. Two overexpressed miRNAs in MEC (miR-22 and miR-205) were selected for inhibition by the CRISPR-Cas9 method. Cell viability, migration, and invasion assays were performed using an intermediate grade MEC cell line. Knockout of miR-205 reduced cell viability and enhanced ZEB2 expression, while miR-22 knockout reduced cell migration and invasion and enhanced ESR1 expression. Our results indicate a distinct transcriptomic profile of MEC compared to NSG, and the integrative analysis highlighted miRNA-mRNA interactions involving cancer-related pathways, including PTEN and PI3K/AKT. CONCLUSION: The in vitro functional studies revealed that miR-22 and miR-205 deficiencies reduced the viability, migration, and invasion of the MEC cells suggesting they are potential oncogenic drivers in MEC.

17.
Nat Mater ; 20(4): 548-559, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33257795

RESUMO

Stromal stiffening accompanies malignancy, compromises treatment and promotes tumour aggression. Clarifying the molecular nature and the factors that regulate stromal stiffening in tumours should identify biomarkers to stratify patients for therapy and interventions to improve outcome. We profiled lysyl hydroxylase-mediated and lysyl oxidase-mediated collagen crosslinks and quantified the greatest abundance of total and complex collagen crosslinks in aggressive human breast cancer subtypes with the stiffest stroma. These tissues harbour the highest number of tumour-associated macrophages, whose therapeutic ablation in experimental models reduced metastasis, and decreased collagen crosslinks and stromal stiffening. Epithelial-targeted expression of the crosslinking enzyme, lysyl oxidase, had no impact on collagen crosslinking in PyMT mammary tumours, whereas stromal cell targeting did. Stromal cells in microdissected human tumours expressed the highest level of collagen crosslinking enzymes. Immunohistochemical analysis of biopsies from a cohort of patients with breast cancer revealed that stromal expression of lysyl hydroxylase 2, an enzyme that induces hydroxylysine aldehyde-derived collagen crosslinks and stromal stiffening, correlated significantly with disease specific mortality. The findings link tissue inflammation, stromal cell-mediated collagen crosslinking and stiffening to tumour aggression and identify lysyl hydroxylase 2 as a stromal biomarker.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Colágeno/metabolismo , Células Estromais/metabolismo , Macrófagos Associados a Tumor/metabolismo , Adulto , Biópsia , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Pessoa de Meia-Idade , Proteína-Lisina 6-Oxidase/metabolismo , Células Estromais/patologia
18.
Nat Commun ; 11(1): 4205, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826891

RESUMO

Triple negative breast cancer (TNBC) is a deadly form of breast cancer due to the development of resistance to chemotherapy affecting over 30% of patients. New therapeutics and companion biomarkers are urgently needed. Recognizing the elevated expression of glucose transporter 1 (GLUT1, encoded by SLC2A1) and associated metabolic dependencies in TNBC, we investigated the vulnerability of TNBC cell lines and patient-derived samples to GLUT1 inhibition. We report that genetic or pharmacological inhibition of GLUT1 with BAY-876 impairs the growth of a subset of TNBC cells displaying high glycolytic and lower oxidative phosphorylation (OXPHOS) rates. Pathway enrichment analysis of gene expression data suggests that the functionality of the E2F pathway may reflect to some extent OXPHOS activity. Furthermore, the protein levels of retinoblastoma tumor suppressor (RB1) strongly correlate with the degree of sensitivity to GLUT1 inhibition in TNBC, where RB1-negative cells are insensitive to GLUT1 inhibition. Collectively, our results highlight a strong and targetable RB1-GLUT1 metabolic axis in TNBC and warrant clinical evaluation of GLUT1 inhibition in TNBC patients stratified according to RB1 protein expression levels.


Assuntos
Transportador de Glucose Tipo 1/antagonistas & inibidores , Transportador de Glucose Tipo 1/metabolismo , Proteínas de Ligação a Retinoblastoma/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais , Neoplasias da Mama/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transportador de Glucose Tipo 1/genética , Humanos , Camundongos , Fosforilação Oxidativa , Proteômica , Pirazóis/farmacologia , Piridinas/farmacologia , Quinolinas , RNA Mensageiro/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Ubiquitina-Proteína Ligases/genética
19.
Cancer Discov ; 10(9): 1312-1329, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32546577

RESUMO

Tumor progression upon treatment arises from preexisting resistant cancer cells and/or adaptation of persister cancer cells committing to an expansion phase. Here, we show that evasion from viral mimicry response allows the growth of taxane-resistant triple-negative breast cancer (TNBC). This is enabled by an epigenetic state adapted to taxane-induced metabolic stress, where DNA hypomethylation over loci enriched in transposable elements (TE) is compensated by large chromatin domains of H3K27me3 to warrant TE repression. This epigenetic state creates a vulnerability to epigenetic therapy against EZH2, the H3K27me3 methyltransferase, which alleviates TE repression in taxane-resistant TNBC, leading to double-stranded RNA production and growth inhibition through viral mimicry response. Collectively, our results illustrate how epigenetic states over TEs promote cancer progression under treatment and can inform about vulnerabilities to epigenetic therapy. SIGNIFICANCE: Drug-resistant cancer cells represent a major barrier to remission for patients with cancer. Here we show that drug-induced metabolic perturbation and epigenetic states enable evasion from the viral mimicry response induced by chemotherapy in TNBC. These epigenetic states define a vulnerability to epigenetic therapy using EZH2 inhibitors in taxane-resistant TNBC.See related commentary by Janin and Esteller, p. 1258.This article is highlighted in the In This Issue feature, p. 1241.


Assuntos
Antineoplásicos/farmacologia , Epigênese Genética/imunologia , Mimetismo Molecular/imunologia , Neoplasias de Mama Triplo Negativas/imunologia , Evasão Tumoral/genética , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sequenciamento de Cromatina por Imunoprecipitação , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/imunologia , Elementos de DNA Transponíveis/genética , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/imunologia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética/efeitos dos fármacos , Feminino , Humanos , Camundongos , Mimetismo Molecular/genética , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , RNA de Cadeia Dupla/imunologia , RNA de Cadeia Dupla/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Commun Biol ; 3(1): 310, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546838

RESUMO

Subsets of breast tumors present major clinical challenges, including triple-negative, metastatic/recurrent disease and rare histologies. Here, we developed 37 patient-derived xenografts (PDX) from these difficult-to-treat cancers to interrogate their molecular composition and functional biology. Whole-genome and transcriptome sequencing and reverse-phase protein arrays revealed that PDXs conserve the molecular landscape of their corresponding patient tumors. Metastatic potential varied between PDXs, where low-penetrance lung micrometastases were most common, though a subset of models displayed high rates of dissemination in organotropic or diffuse patterns consistent with what was observed clinically. Chemosensitivity profiling was performed in vivo with standard-of-care agents, where multi-drug chemoresistance was retained upon xenotransplantation. Consolidating chemogenomic data identified actionable features in the majority of PDXs, and marked regressions were observed in a subset that was evaluated in vivo. Together, this clinically-annotated PDX library with comprehensive molecular and phenotypic profiling serves as a resource for preclinical studies on difficult-to-treat breast tumors.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos NOD , Mutação , Medicina de Precisão , Prognóstico , Estudo de Prova de Conceito , Análise Serial de Proteínas/métodos , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...